About This Blog

Including my content originally published on 𝕏, SQLperformance.com, and SQLblog.com
Showing posts with label Halloween Protection. Show all posts
Showing posts with label Halloween Protection. Show all posts

Tuesday, 17 September 2024

Why a Self-Join Requires Halloween Protection

Title image

This article was originally published on 𝕏.

I was asked recently why Halloween Protection was needed for data modification statements that include a self-join of the target table. This gives me a chance to explain, while also covering some interesting product bug history from the SQL Server 7 and 2000 days.

If you already know all there is to know about the Halloween Problem as it applies to SQL Server, you can skip the background section.

Wednesday, 24 March 2021

Incorrect Results with Parallel Eager Spools and Batch Mode

Incorrect Results with Parallel Eager Spools and Batch Mode

You might have noticed a warning at the top of the release notes for SQL Server 2016 SP2 CU 16:

Note: After you apply CU 16 for SQL Server 2016 SP2, you might encounter an issue in which DML (insert/update/delete) queries that use parallel plans cannot complete any execution and encounter HP_SPOOL_BARRIER waits. You can use the trace flag 13116 or MAXDOP=1 hint to work around this issue. This issue is related to the introduction of fix for 13685819 and it will be fixed in the next Cumulative Update.

That warning links to bug reference 13685819 on the same page. There isn’t a separate KB article, only the description:

Fixes an issue with insert query in SQL Server 2016 that reads the data from the same table and uses a parallel execution plan may produce duplicate rows

Sunday, 26 July 2020

A bug with Halloween Protection and the OUTPUT Clause

A bug with Halloween Protection and the OUTPUT Clause

Background

The OUTPUT clause can be used to return results from an INSERT, UPDATE, DELETE, or MERGE statement. The data can be returned to the client, inserted to a table, or both.

There are two ways to add OUTPUT data to a table:

  1. Using OUTPUT INTO
  2. With an outer INSERT statement.

For example:

-- Test table
DECLARE @Target table
(
    id integer IDENTITY (1, 1) NOT NULL, 
    c1 integer NULL
);

-- Holds rows from the OUTPUT clause
DECLARE @Output table 
(
    id integer NOT NULL, 
    c1 integer NULL
);

Thursday, 21 February 2013

Halloween Protection – The Complete Series

Halloween Protection – The Complete Series

I have written a four-part series on the Halloween Problem.

Some of you will never have heard about this issue. Those that have might associate it only with T-SQL UPDATE queries. In fact, the Halloween Problem affects execution plans for INSERT, UPDATE, DELETE and MERGE statements.

This is a topic I have been meaning to write about properly for years, ever since I read Craig Freedman’s 2008 blog post on the topic, which ended with the cryptic comment:

“…although I’ve used update statements for all of the examples in this post, some insert and delete statements also require Halloween protection, but I’ll save that topic for a future post.”

That future post never materialized, so I thought I would have a go. The four parts of the series are summarized and linked below, I hope you find the material interesting.

Wednesday, 20 February 2013

The Halloween Problem – Part 4

The Halloween Problem – Part 4

The Halloween Problem can have a number of important effects on execution plans. In this final part of the series, we look at the tricks the optimizer can employ to avoid the Halloween Problem when compiling plans for queries that add, change or delete data.

Monday, 18 February 2013

The Halloween Problem – Part 3

The Halloween Problem – Part 3

The MERGE statement (introduced in SQL Server 2008) allows us to perform a mixture of INSERT, UPDATE, and DELETE operations using a single statement.

The Halloween Protection issues for MERGE are mostly a combination of the requirements of the individual operations, but there are some important differences and a couple of interesting optimizations that apply only to MERGE.

Friday, 15 February 2013

The Halloween Problem – Part 2

The Halloween Problem – Part 2

In the first part of this series, we saw how the Halloween Problem applies to UPDATE queries. To recap briefly, the problem was that an index used to locate records to update had its keys modified by the update operation itself (another good reason to use included columns in an index rather than extending the keys). The query optimizer introduced an Eager Table Spool operator to separate the reading and writing sides of the execution plan to avoid the problem. In this post, we will see how the same underlying issue can affect INSERT and DELETE statements.

Wednesday, 13 February 2013

The Halloween Problem – Part 1

The Halloween Problem – Part 1

Much has been written over the years about understanding and optimizing SELECT queries, but rather less about data modification. This series looks at an issue that is specific to INSERT, UPDATE, DELETE and MERGE queries – the Halloween Problem.

The phrase “Halloween Problem” was originally coined with reference to a SQL UPDATE query that was supposed to give a 10% raise to every employee who earned less than $25,000. The problem was that the query kept giving 10% raises until everyone earned at least $25,000.

We will see later on in this series that the underlying issue also applies to INSERT, DELETE and MERGE queries, but for this first entry, it will be helpful to examine the UPDATE problem in a bit of detail.